\(\int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx\) [159]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 310 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx=\frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right ) \tan (e+f x)}{c^3 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {a^{5/2} \left (3 c^3-15 c^2 d-20 c d^2-8 d^3\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right ) \tan (e+f x)}{4 c^3 \sqrt {d} (c+d)^{5/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {a^2 (c-d) \tan (e+f x)}{2 c (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))^2}+\frac {a^2 \left (3 c^2-7 c d-4 d^2\right ) \tan (e+f x)}{4 c^2 (c+d)^2 f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))} \]

[Out]

1/2*a^2*(c-d)*tan(f*x+e)/c/(c+d)/f/(c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2)+1/4*a^2*(3*c^2-7*c*d-4*d^2)*tan(f
*x+e)/c^2/(c+d)^2/f/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2)+2*a^(5/2)*arctanh((a-a*sec(f*x+e))^(1/2)/a^(1/2))*
tan(f*x+e)/c^3/f/(a-a*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2)+1/4*a^(5/2)*(3*c^3-15*c^2*d-20*c*d^2-8*d^3)*arc
tanh(d^(1/2)*(a-a*sec(f*x+e))^(1/2)/a^(1/2)/(c+d)^(1/2))*tan(f*x+e)/c^3/(c+d)^(5/2)/f/d^(1/2)/(a-a*sec(f*x+e))
^(1/2)/(a+a*sec(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {4025, 156, 162, 65, 212, 214} \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx=\frac {2 a^{5/2} \tan (e+f x) \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{c^3 f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}+\frac {a^{5/2} \left (3 c^3-15 c^2 d-20 c d^2-8 d^3\right ) \tan (e+f x) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right )}{4 c^3 \sqrt {d} f (c+d)^{5/2} \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}+\frac {a^2 \left (3 c^2-7 c d-4 d^2\right ) \tan (e+f x)}{4 c^2 f (c+d)^2 \sqrt {a \sec (e+f x)+a} (c+d \sec (e+f x))}+\frac {a^2 (c-d) \tan (e+f x)}{2 c f (c+d) \sqrt {a \sec (e+f x)+a} (c+d \sec (e+f x))^2} \]

[In]

Int[(a + a*Sec[e + f*x])^(3/2)/(c + d*Sec[e + f*x])^3,x]

[Out]

(2*a^(5/2)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]]*Tan[e + f*x])/(c^3*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*
Sec[e + f*x]]) + (a^(5/2)*(3*c^3 - 15*c^2*d - 20*c*d^2 - 8*d^3)*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sq
rt[a]*Sqrt[c + d])]*Tan[e + f*x])/(4*c^3*Sqrt[d]*(c + d)^(5/2)*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f
*x]]) + (a^2*(c - d)*Tan[e + f*x])/(2*c*(c + d)*f*Sqrt[a + a*Sec[e + f*x]]*(c + d*Sec[e + f*x])^2) + (a^2*(3*c
^2 - 7*c*d - 4*d^2)*Tan[e + f*x])/(4*c^2*(c + d)^2*f*Sqrt[a + a*Sec[e + f*x]]*(c + d*Sec[e + f*x]))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 156

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 4025

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[a^2*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])), Subst[Int[(a + b*x)^(m - 1/2)*((c
 + d*x)^n/(x*Sqrt[a - b*x])), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d,
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m - 1/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (a^2 \tan (e+f x)\right ) \text {Subst}\left (\int \frac {a+a x}{x \sqrt {a-a x} (c+d x)^3} \, dx,x,\sec (e+f x)\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}} \\ & = \frac {a^2 (c-d) \tan (e+f x)}{2 c (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))^2}-\frac {(a \tan (e+f x)) \text {Subst}\left (\int \frac {2 a^2 (c+d)+\frac {3}{2} a^2 (c-d) x}{x \sqrt {a-a x} (c+d x)^2} \, dx,x,\sec (e+f x)\right )}{2 c (c+d) f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}} \\ & = \frac {a^2 (c-d) \tan (e+f x)}{2 c (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))^2}+\frac {a^2 \left (3 c^2-7 c d-4 d^2\right ) \tan (e+f x)}{4 c^2 (c+d)^2 f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))}-\frac {\tan (e+f x) \text {Subst}\left (\int \frac {2 a^3 (c+d)^2+\frac {1}{4} a^3 \left (3 c^2-7 c d-4 d^2\right ) x}{x \sqrt {a-a x} (c+d x)} \, dx,x,\sec (e+f x)\right )}{2 c^2 (c+d)^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}} \\ & = \frac {a^2 (c-d) \tan (e+f x)}{2 c (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))^2}+\frac {a^2 \left (3 c^2-7 c d-4 d^2\right ) \tan (e+f x)}{4 c^2 (c+d)^2 f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))}-\frac {\left (a^3 \tan (e+f x)\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a-a x}} \, dx,x,\sec (e+f x)\right )}{c^3 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {\left (a^3 \left (3 c^3-15 c^2 d-20 c d^2-8 d^3\right ) \tan (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a-a x} (c+d x)} \, dx,x,\sec (e+f x)\right )}{8 c^3 (c+d)^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}} \\ & = \frac {a^2 (c-d) \tan (e+f x)}{2 c (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))^2}+\frac {a^2 \left (3 c^2-7 c d-4 d^2\right ) \tan (e+f x)}{4 c^2 (c+d)^2 f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))}+\frac {\left (2 a^2 \tan (e+f x)\right ) \text {Subst}\left (\int \frac {1}{1-\frac {x^2}{a}} \, dx,x,\sqrt {a-a \sec (e+f x)}\right )}{c^3 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {\left (a^2 \left (3 c^3-15 c^2 d-20 c d^2-8 d^3\right ) \tan (e+f x)\right ) \text {Subst}\left (\int \frac {1}{c+d-\frac {d x^2}{a}} \, dx,x,\sqrt {a-a \sec (e+f x)}\right )}{4 c^3 (c+d)^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}} \\ & = \frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right ) \tan (e+f x)}{c^3 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {a^{5/2} \left (3 c^3-15 c^2 d-20 c d^2-8 d^3\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right ) \tan (e+f x)}{4 c^3 \sqrt {d} (c+d)^{5/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {a^2 (c-d) \tan (e+f x)}{2 c (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))^2}+\frac {a^2 \left (3 c^2-7 c d-4 d^2\right ) \tan (e+f x)}{4 c^2 (c+d)^2 f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 5.86 (sec) , antiderivative size = 359, normalized size of antiderivative = 1.16 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx=\frac {(d+c \cos (e+f x))^3 \sec ^3\left (\frac {1}{2} (e+f x)\right ) \sec ^{\frac {3}{2}}(e+f x) (a (1+\sec (e+f x)))^{3/2} \left (\frac {\sqrt {2} \left (8 \sqrt {d} (c+d)^{5/2} \arctan \left (\frac {\tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}}}\right )+\left (3 c^3-15 c^2 d-20 c d^2-8 d^3\right ) \arctan \left (\frac {\sqrt {d} \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c+d} \sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}}}\right )\right ) \sec \left (\frac {1}{2} (e+f x)\right ) \sqrt {\cos (e+f x) \sec ^2\left (\frac {1}{2} (e+f x)\right )} \sqrt {\cos ^2\left (\frac {1}{2} (e+f x)\right ) \sec (e+f x)}}{\sqrt {d} (c+d)^{5/2} \sqrt {\sec ^2\left (\frac {1}{2} (e+f x)\right )}}+\frac {2 c \sqrt {\sec (e+f x)} \left (c \left (5 c^2-7 c d-6 d^2\right )+d \left (3 c^2-7 c d-4 d^2\right ) \sec (e+f x)\right ) \sin \left (\frac {1}{2} (e+f x)\right )}{(c+d)^2 (c+d \sec (e+f x))^2}\right )}{16 c^3 f (c+d \sec (e+f x))^3} \]

[In]

Integrate[(a + a*Sec[e + f*x])^(3/2)/(c + d*Sec[e + f*x])^3,x]

[Out]

((d + c*Cos[e + f*x])^3*Sec[(e + f*x)/2]^3*Sec[e + f*x]^(3/2)*(a*(1 + Sec[e + f*x]))^(3/2)*((Sqrt[2]*(8*Sqrt[d
]*(c + d)^(5/2)*ArcTan[Tan[(e + f*x)/2]/Sqrt[Cos[e + f*x]/(1 + Cos[e + f*x])]] + (3*c^3 - 15*c^2*d - 20*c*d^2
- 8*d^3)*ArcTan[(Sqrt[d]*Tan[(e + f*x)/2])/(Sqrt[c + d]*Sqrt[Cos[e + f*x]/(1 + Cos[e + f*x])])])*Sec[(e + f*x)
/2]*Sqrt[Cos[e + f*x]*Sec[(e + f*x)/2]^2]*Sqrt[Cos[(e + f*x)/2]^2*Sec[e + f*x]])/(Sqrt[d]*(c + d)^(5/2)*Sqrt[S
ec[(e + f*x)/2]^2]) + (2*c*Sqrt[Sec[e + f*x]]*(c*(5*c^2 - 7*c*d - 6*d^2) + d*(3*c^2 - 7*c*d - 4*d^2)*Sec[e + f
*x])*Sin[(e + f*x)/2])/((c + d)^2*(c + d*Sec[e + f*x])^2)))/(16*c^3*f*(c + d*Sec[e + f*x])^3)

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(55535\) vs. \(2(272)=544\).

Time = 16.91 (sec) , antiderivative size = 55536, normalized size of antiderivative = 179.15

method result size
default \(\text {Expression too large to display}\) \(55536\)

[In]

int((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 632 vs. \(2 (272) = 544\).

Time = 11.67 (sec) , antiderivative size = 2729, normalized size of antiderivative = 8.80 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e))^3,x, algorithm="fricas")

[Out]

[-1/8*((3*a*c^3*d^2 - 15*a*c^2*d^3 - 20*a*c*d^4 - 8*a*d^5 + (3*a*c^5 - 15*a*c^4*d - 20*a*c^3*d^2 - 8*a*c^2*d^3
)*cos(f*x + e)^3 + (3*a*c^5 - 9*a*c^4*d - 50*a*c^3*d^2 - 48*a*c^2*d^3 - 16*a*c*d^4)*cos(f*x + e)^2 + (6*a*c^4*
d - 27*a*c^3*d^2 - 55*a*c^2*d^3 - 36*a*c*d^4 - 8*a*d^5)*cos(f*x + e))*sqrt(-a/(c*d + d^2))*log((2*(c*d + d^2)*
sqrt(-a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a*d)*cos(f*x
 + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)) - 8*(a*c^2*d^2 + 2*a*
c*d^3 + a*d^4 + (a*c^4 + 2*a*c^3*d + a*c^2*d^2)*cos(f*x + e)^3 + (a*c^4 + 4*a*c^3*d + 5*a*c^2*d^2 + 2*a*c*d^3)
*cos(f*x + e)^2 + (2*a*c^3*d + 5*a*c^2*d^2 + 4*a*c*d^3 + a*d^4)*cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2
 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x
 + e) + 1)) - 2*((5*a*c^4 - 7*a*c^3*d - 6*a*c^2*d^2)*cos(f*x + e)^2 + (3*a*c^3*d - 7*a*c^2*d^2 - 4*a*c*d^3)*co
s(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/((c^7 + 2*c^6*d + c^5*d^2)*f*cos(f*x + e)^3
+ (c^7 + 4*c^6*d + 5*c^5*d^2 + 2*c^4*d^3)*f*cos(f*x + e)^2 + (2*c^6*d + 5*c^5*d^2 + 4*c^4*d^3 + c^3*d^4)*f*cos
(f*x + e) + (c^5*d^2 + 2*c^4*d^3 + c^3*d^4)*f), -1/8*(16*(a*c^2*d^2 + 2*a*c*d^3 + a*d^4 + (a*c^4 + 2*a*c^3*d +
 a*c^2*d^2)*cos(f*x + e)^3 + (a*c^4 + 4*a*c^3*d + 5*a*c^2*d^2 + 2*a*c*d^3)*cos(f*x + e)^2 + (2*a*c^3*d + 5*a*c
^2*d^2 + 4*a*c*d^3 + a*d^4)*cos(f*x + e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/
(sqrt(a)*sin(f*x + e))) + (3*a*c^3*d^2 - 15*a*c^2*d^3 - 20*a*c*d^4 - 8*a*d^5 + (3*a*c^5 - 15*a*c^4*d - 20*a*c^
3*d^2 - 8*a*c^2*d^3)*cos(f*x + e)^3 + (3*a*c^5 - 9*a*c^4*d - 50*a*c^3*d^2 - 48*a*c^2*d^3 - 16*a*c*d^4)*cos(f*x
 + e)^2 + (6*a*c^4*d - 27*a*c^3*d^2 - 55*a*c^2*d^3 - 36*a*c*d^4 - 8*a*d^5)*cos(f*x + e))*sqrt(-a/(c*d + d^2))*
log((2*(c*d + d^2)*sqrt(-a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a
*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)) -
2*((5*a*c^4 - 7*a*c^3*d - 6*a*c^2*d^2)*cos(f*x + e)^2 + (3*a*c^3*d - 7*a*c^2*d^2 - 4*a*c*d^3)*cos(f*x + e))*sq
rt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/((c^7 + 2*c^6*d + c^5*d^2)*f*cos(f*x + e)^3 + (c^7 + 4*c^6
*d + 5*c^5*d^2 + 2*c^4*d^3)*f*cos(f*x + e)^2 + (2*c^6*d + 5*c^5*d^2 + 4*c^4*d^3 + c^3*d^4)*f*cos(f*x + e) + (c
^5*d^2 + 2*c^4*d^3 + c^3*d^4)*f), -1/4*((3*a*c^3*d^2 - 15*a*c^2*d^3 - 20*a*c*d^4 - 8*a*d^5 + (3*a*c^5 - 15*a*c
^4*d - 20*a*c^3*d^2 - 8*a*c^2*d^3)*cos(f*x + e)^3 + (3*a*c^5 - 9*a*c^4*d - 50*a*c^3*d^2 - 48*a*c^2*d^3 - 16*a*
c*d^4)*cos(f*x + e)^2 + (6*a*c^4*d - 27*a*c^3*d^2 - 55*a*c^2*d^3 - 36*a*c*d^4 - 8*a*d^5)*cos(f*x + e))*sqrt(a/
(c*d + d^2))*arctan((c + d)*sqrt(a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(a*sin(f*
x + e))) - 4*(a*c^2*d^2 + 2*a*c*d^3 + a*d^4 + (a*c^4 + 2*a*c^3*d + a*c^2*d^2)*cos(f*x + e)^3 + (a*c^4 + 4*a*c^
3*d + 5*a*c^2*d^2 + 2*a*c*d^3)*cos(f*x + e)^2 + (2*a*c^3*d + 5*a*c^2*d^2 + 4*a*c*d^3 + a*d^4)*cos(f*x + e))*sq
rt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e)
+ a*cos(f*x + e) - a)/(cos(f*x + e) + 1)) - ((5*a*c^4 - 7*a*c^3*d - 6*a*c^2*d^2)*cos(f*x + e)^2 + (3*a*c^3*d -
 7*a*c^2*d^2 - 4*a*c*d^3)*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/((c^7 + 2*c^6*d
+ c^5*d^2)*f*cos(f*x + e)^3 + (c^7 + 4*c^6*d + 5*c^5*d^2 + 2*c^4*d^3)*f*cos(f*x + e)^2 + (2*c^6*d + 5*c^5*d^2
+ 4*c^4*d^3 + c^3*d^4)*f*cos(f*x + e) + (c^5*d^2 + 2*c^4*d^3 + c^3*d^4)*f), -1/4*((3*a*c^3*d^2 - 15*a*c^2*d^3
- 20*a*c*d^4 - 8*a*d^5 + (3*a*c^5 - 15*a*c^4*d - 20*a*c^3*d^2 - 8*a*c^2*d^3)*cos(f*x + e)^3 + (3*a*c^5 - 9*a*c
^4*d - 50*a*c^3*d^2 - 48*a*c^2*d^3 - 16*a*c*d^4)*cos(f*x + e)^2 + (6*a*c^4*d - 27*a*c^3*d^2 - 55*a*c^2*d^3 - 3
6*a*c*d^4 - 8*a*d^5)*cos(f*x + e))*sqrt(a/(c*d + d^2))*arctan((c + d)*sqrt(a/(c*d + d^2))*sqrt((a*cos(f*x + e)
 + a)/cos(f*x + e))*cos(f*x + e)/(a*sin(f*x + e))) + 8*(a*c^2*d^2 + 2*a*c*d^3 + a*d^4 + (a*c^4 + 2*a*c^3*d + a
*c^2*d^2)*cos(f*x + e)^3 + (a*c^4 + 4*a*c^3*d + 5*a*c^2*d^2 + 2*a*c*d^3)*cos(f*x + e)^2 + (2*a*c^3*d + 5*a*c^2
*d^2 + 4*a*c*d^3 + a*d^4)*cos(f*x + e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(s
qrt(a)*sin(f*x + e))) - ((5*a*c^4 - 7*a*c^3*d - 6*a*c^2*d^2)*cos(f*x + e)^2 + (3*a*c^3*d - 7*a*c^2*d^2 - 4*a*c
*d^3)*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/((c^7 + 2*c^6*d + c^5*d^2)*f*cos(f*x
 + e)^3 + (c^7 + 4*c^6*d + 5*c^5*d^2 + 2*c^4*d^3)*f*cos(f*x + e)^2 + (2*c^6*d + 5*c^5*d^2 + 4*c^4*d^3 + c^3*d^
4)*f*cos(f*x + e) + (c^5*d^2 + 2*c^4*d^3 + c^3*d^4)*f)]

Sympy [F]

\[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx=\int \frac {\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}{\left (c + d \sec {\left (e + f x \right )}\right )^{3}}\, dx \]

[In]

integrate((a+a*sec(f*x+e))**(3/2)/(c+d*sec(f*x+e))**3,x)

[Out]

Integral((a*(sec(e + f*x) + 1))**(3/2)/(c + d*sec(e + f*x))**3, x)

Maxima [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e))^3,x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx=\int { \frac {{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{{\left (d \sec \left (f x + e\right ) + c\right )}^{3}} \,d x } \]

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e))^3,x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{(c+d \sec (e+f x))^3} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{{\left (c+\frac {d}{\cos \left (e+f\,x\right )}\right )}^3} \,d x \]

[In]

int((a + a/cos(e + f*x))^(3/2)/(c + d/cos(e + f*x))^3,x)

[Out]

int((a + a/cos(e + f*x))^(3/2)/(c + d/cos(e + f*x))^3, x)